Memory Manager

Given: November 2, 2017
Due: on or before December 5, 2017
Your goal is to write a small memory manager to implement one or more of the memory management algorithms (first fit, best fit, worst fit).

You may implement memory as an array (0.. MAX) of structures where each structure contains the PID and any other information that you need. You may also want to have a waiting queue and a free list of free memory blocks. Initialize everything to zero.

The input to the program will include the process ID number (PID) and its size. (You may choose to include the CPU burst time since the process will need to remain in memory and run to completion, but you don’t have to handle this if you don’t choose to). You (the user) simulate the scheduler and input the data to be stored in memory for the next process, both interactively, and randomly or from a file.

The program should assign each process to a memory block or put it on a waiting queue if there is no room available in memory. Also you should display (either as text or graphically) the contents of memory and the waiting queue as changes are made. You should include a menu to provide these options. Input should continue until you decide to terminate. HINT: Use a loop!
Your program must also implement compaction – for example when the waiting queue exceeds a certain value or after a certain interval of time, or when the user chooses to compact memory (again…your choice).

You may use the language of your choice (as long as I can run it) and add any additional “bells and whistles”. Remember to document your code and include in a separate document an explanation of the data structures you use, the algorithm you are implementing, any assumptions you make and any other relevant information.

A sample has been included for your use. Experiment with it until you understand how it works, then begin to create your own memory manager.

