CSE 220: Systems Fundamentals |
Homework #3

Fall 2016

Assignment Due: November 4,2016 by 11:59 pm

Assignment Overview

The focus of this homework assighnment is on reading data from files, memory organization, and multi-
dimensional arrays in memory. This assignment also reinforces MIPS function calling and register con-
ventions.

In this homework you will be implementing Bombsweeper, a version of every computer scientist’s favorite
game - Minesweeper. If you are unfamiliar with the game, give it atry here. The Help menu at that website
will give you the full rules of the game and how to play it.

To implement the game we will use a basic display screen which operates similarly to VT100. The standard
VT100 terminal uses ANSI escape codes to specify the foreground and background colors of each position
of the terminal. In this assignment, you will use the ANSI characters with and a special designed font to
display the Bombsweeper game in a 10 x10 display. To display the game, the tool uses the idea of Memory
Mapped /0 (MMIO), which is described a little later.

In order to complete this assignment you will have to get familiar with displaying information in the MARS
MMIO Minesweeper display, which is a 2D array data structure.

Please read the assignment completely before implementing all the functions.

You MUST implement all the functions in the assighnment as defined. It is OK to implement additional
helper functions of your own inthe hw3.asm file.

A You MUST follow the efficient MIPS calling and register conventions. Do not brute-force save reg-
isters! You WILL lose points.

A Do NOT rely on changes you make in your main files! We will test your functions with our own testing
mains. Functions will not be called in the same order and will be called independent of each other.

A Do not submit a file with the functions/labels main or _start defined. You will obtain a ZERO for
the assignment if you do this.

CSE 220 - Fall 2016 Homework #3 Page 1

https://en.wikipedia.org/wiki/Minesweeper_(video_game)
http://www.freeminesweeper.org/minecore.html
http://en.wikipedia.org/wiki/VT100
https://en.wikipedia.org/wiki/ANSI_escape_code
http://en.wikipedia.org/wiki/Memory-mapped_I/O

O If you are having difficulties implementing these functions, write out the pseudocode or implement the
functions in a higher-level language first. Once you understand the algorithm and what steps to perform,
then translate the logic to MIPS.

© When writing your program, try to comment as much as possible. Try to stay consistent with your
formatting. It is much easier for your TA and the professor to help you if we can figure out what your
code does quickly.

Getting started

Download hw3.z1ip from Piazza in the homework section of Resources. This file contains hw3.asm
and main.asm,whichyou need for the assignment. At the top of your hw3.asm program in comments
put your name and SBU ID number.

Homework #3
name: MY_NAME
sbuid: MY_SBU_ID

How to test your functions

To test your functions, simply open the provided hw3.asm and main.asm in MARS. Next, just assemble

main.asm and run the file. MARS will take the contents of the file referenced with the .include at
the end of the file and add the contents of your file to the main file before assembling it. Once the contents
have been substituted into the file, MARS will then assemble it as normal.

main.asm provides a wrapper for your functions to enable actual game play. You may modify this file,
or create your own files to test your functions independently.

A Your assignment will not be graded using the provided main.

Any modifications to main.asm will not be graded. You will only submit your hw3.asm file via Sparky.
Make sure that all code require for implementing your functions (.text and .data) areincluded in
the hw3.asm file!

A Make sure toinitialize all of your values within your functions! Never assume registers or memory will
hold any particular values!

The Bombsweeper Display in MARS

In the Tools menu, there is an option called CSE220 Minesweeper. If your version of MARS does not have
this tool, you need to download the version of MARS for this semester from Piazza.

CSE 220 - Fall 2016 Homework #3 Page 2

Bl MARS 4.4
File Edit Run Settings | Tools | Help

- BHT Simulator
] o

Bitmap Display
Data Cache Simulator —
CS5E220 Display MMIO Simulator |—
CS5E220 Minesweeper
Digital Lab Sim

Edit Execute

To use the tool, you must connect it to your assembled program. When you are ready to test your code,
assemble the main.asm, open the Minesweeper tool and then press the button “Connect to MIPS". When
you run your code you will see real-time changes in the display when you change the MMIO values.

This tool simulates displaying data on the screen similar to a terminal windows (like sparky). A section of
main memory is mapped directly to each cell in the screen. This technique is a form of Memory Mapped
I/0 (MMIQ). Each cell of the display is specified by a half-word (2 bytes) of information. The lower byte
contains the ASCII character to be displayed at the cell position. The upper byte contains the background
and foreground color information for the cell. The MMIQO regionin MARS begins at address Oxffff0000 .
You can select this region in the MARS simulator from the drop down in the data segment sub-window.
The simulator will treat the bytes startingat Oxffffe000 to OxffffOOc7 asthevaluesofa 10-column-
by-10-row window. What this means is that the simulator will attempt to interpret the values stored at
these memory addresses as ASCII characters and colors to print to the display.

Display colors

FOREGROUND/BACKGROUND ATTRIBUTE_VALUE= ATTRIBUTE_VALUE=
VALUE

0 Dark Gray

o
[y

1

2 Green Bright Green
3 Brown Yellow
4 Blue Bright Blue
5 Magenta

6 Cyan Bright Cyan

7 White

Colors on the display are controlled by specific values stored in the upper byte. The Foreground color is

CSE 220 - Fall 2016 Homework #3 Page 3

http://en.wikipedia.org/wiki/Memory-mapped_I/O
http://en.wikipedia.org/wiki/Memory-mapped_I/O

the color of the character which is displayed. The Background color is the background color of the entire
cell. Below is a chart of the colors available and their corresponding values. The ATTRIBUTE_VALUE, also
known as the BOLD BIT, will set the depth of the color.

To store all of the color information into a single byte, the following format is used. The example shown in
the table sets the Background color to Green and the Foreground color to Bright Magenta. The hexadec-
imal value for the byte is also shown.

Bit position and meaning
Field Background Background Foreground Foreground
Description Bold Bit Color Bold Bit Color
Bit Position 7 6 5 | 4 3 2 1 ! 0
Bit Value 0 0 | 1 | 0 1 1 | 0 | 1
Hexadecimal 2 D
Value

The default cell state will be black background, white foreground, and ASCII char NULL (\0’).
Display font

The font in the Bombsweeper display is a custom font. The table illustrates the ASCII character mappings
to symbols used for the game. All printable characters not listed in the table map to an ‘X..

ASCII Char
10!
11!
12!
13!
14!
15!
16!
=7
‘8

‘b"” or ‘B’

‘e’ or 'E’

‘f' or ‘F’

All others
1\0!

Symbol

X |4 3% @ m |J|m |t |L | - |O

A Note: The ASCII character 'O’ and its symbol should never be displayed during game operation. How-
ever, this character/symbol was included in the display font to assist you in debugging your logic.

CSE 220 - Fall 2016 Homework #3 Page 4

Display Layout

As mentioned above, the region of video memory which is mapped between the addresses OxffffoO00

to OxffffeOc7 describes a 10-column-by-10-row console. Since each location on this display takes up
two bytes (one for the colors and one for an ASCII character), this means that each row actually takes up
10 columns x 22 \which leaves us with %. So the total continuous region of memory consists of 200

column

bytes.

uCSEZZO Minesweeper, Version 1.0 X
CSE220 Minesweeper
(0,0) | (0,1) (0,9)
(1,0)
(8,0)
(9,0) | (9,1) (9,9)
Tool Control

In attempt to visualize what is actually happening, lets look at some address values and some translations
of that address to (row, col) coordinates. The base case of bytes [0:1] (Oxffffo000 & Oxffffoo01).

Byte O is the 8-bit value of the ASCII character to display on the screen. Byte 1 is the 8-bit format for the
coloring information for the location at which the character is being displayed. Bytes [0:1] make up the
value to display at location (0, 0) on the console.

The next two bytes [2:3] (0xffffee02 & OxffffOOO3) make up the value to display at location (0, 1).

CSE 220 - Fall 2016 Homework #3 Page 5

Bytes [4:5] (0xffffoOO4 & OxffffOOO5) make up the value to display at (0, 2). Etc.

The memory mapped I/O region of memory is stored in Row-Major Order. “Row-major order” means that
each entry per row is placed into memory consecutively one after another, followed by the next row, and
soon.

Part |: Basic Display Functionality

Before starting to implement the functions for Bombsweeper you will implement a function that will get
you familiar with the MMIO display and 2D arrays. Begin by creating a function that will display a smiley
face (because doing CSE 220 homework is fun, just like winning minesweeper!)

CSE220 Minesweeper

/*
This function fills the MMIO region to draw a smiley face.
*/

void smiley(void)

This function will reset each cell in the display to the default colors (background: Black, foreground:
White) and NULL ASCII character. Then it will set particular cells of the display to show a smiley face.

The cells of the smiley face eyes will have a background color of Yellow and foreground color of Grey. The
ASCII character of the eyes will be set to ‘b’ for a bomb. The background color for the mouth will be Red
(not Bright Red), the foreground will be white, and ASCII character ‘e’ for an exploded bomb.

The coordinates of the eyes are: (2,3), (3,3), (2,6), and (3,6). The coordinates for the smile are (6,2), (7,3),
(8,4),(8,5),(7,6),and (6,7).

CSE 220 - Fall 2016 Homework #3 Page 6

http://en.wikipedia.org/wiki/Row-major_order

Make sure you clear everything in the MMIO before you draw your smiley face otherwise you can end up
with some “greens” in your smile (garbage in memory).

Part Il: Reading from Files

In this version of minesweeper you will be reading the content of the game from a file instead of randomly
generating a map based on the first click of the mouse.

O main.asm takes the filename as a argument to the program. The filename must be in the directory
relative to the MARS jar file, not where your main.asm and hw2.asm files are stored.

In this part you will create functions to open files, close files, and read data from the input files into an
array in memory. To assist with reading and writing files, MARS has defined additional system calls.

Service ‘ Code in $vO ‘ Arguments ‘ Results
open file 13 $a0 = address of null-terminated filename string $v0

$al =flags contains file descriptor (negative if error).

$a2 = mode See note below table

read from file 14 $a0 = file descriptor $v0
$al = address of input buffer contains num of characters read
$a2 = maximum num of characters to read (O if end-of-file, negative
if error). See note below table

close file 16 $a0 = file descriptor

O Service 13: MARS implements three flag values: O for read-only, 1 for write-only with create, and 9
for write-only with create and append. It ignores mode. The returned file descriptor will be negative if
the operation failed.

The underlying file 1/O implementation uses java.io.FilelnputStream.read() to read and
java.io.FileOutputStream.write() to write.

MARS maintains file descriptors internally and allocates them starting with 3. File descriptors O, 1 and
2 are always open for: reading from standard input, writing to standard output, and writing to standard
error, respectively (new in release 4.3).

There is an example of using these syscalls here.

Create the following function, open_file. The function is provided the name of the file to open as an
argument. The function must perform the system call to open the file for reading only and return the file
descriptor value returned by the system call.

/*
This function performs the system call to open a file and return the file
descriptor of the file.

CSE 220 - Fall 2016 Homework #3 Page 7

http://courses.missouristate.edu/KenVollmar/MARS/Help/SyscallHelp.html

@param filename: Starting address of the string containing the filename.
@return The file descriptor (integer) of the open file.

*/

public static int open_file(char[] filename)

Next create the function, close_file. The function is provided the file descriptor to a file as an argu-
ment. The function should perform the system call to close the file.

/ *

This function goes and closes the file specified by the file descriptor.

@param fd: File descriptor of the file that needs to be closed.
*/
public static void close_file(int fd)

We will use these two functions in the main program to open and close the map file for the game.

Each map file will load a single game with the coordinates of each bomb in the 10 x 10 board. Each line
of the input file will specify the row and col coordinates of a bomb. The coordinates will be separated by
a space. Refer to the sample map files included in the assignment zipfile, which are depicted in the below
screenshots.

[T1] []
° i
O OO |
HoelNe o B e s
6] |
6
] [T []
mapl.txt map2.txt map3.txt map4.txt

A valid map file must meet the following conditions:

e There must be at least one bomb position specified.
e There can be at most 99 bombs specified.
e The position of each bomb must be valid: (0,0) through (9,9).

e Repeated coordinate pairs in the file are ignored (e.g., if (2,7) appears twice, the second instance is
ignored).

CSE 220 - Fall 2016 Homework #3 Page 8

Since each cell in the MMIQO is specified by two bytes - one for the colors and one for an ASCII character -
there is no room in the MMIO to store the game information. A array of 100 bytes is needed to store the
game information. We will refer to this array as cells array. This array will be passed to your func-

tions. For each cell of the board, the following informationis stored in asingle byte of the cells array:

bit 7: AlwayssettoO

bit 6: Has the cell has been revealed by player? (O: no, 1:yes)
bit 5: Does the cell contain a bomb? (0: no, 1:yes)

bit 4: Has a flag been set on the cell? (O: no, 1:yes)

bit 0-3: Number of bombs that are adjacent to the cell (0-8)

Createthe function load_map toreadthe bomb positions fromthe mapfile and initializethe cells array
to the start state of a game. If any error is detected in the map file, the function will return -1.

An error is any invalid character, or invalid value. VALID characters are the numerical characters 0-9, and
the whitespace characters: space, tab (\t), carriage return (\r) or newline (\n). The function should be able
to handle any amount of extra whitespace characters throughout the file. Coordinates come in pairs (row,
col), and appear in the range (0,0) through (2,9). Therefore if the file contains an odd number of integer
coordinate values, or a coordinate value less than O or greater than 9, the input file is invalid.

The coordinates in each map file are specified as (row, col). For example, mapl.txt contains the follow-
ing lines:

This file contains the positions of 3 bombs at (1,7), (8,2), and (2,5).

/*

This function loads the minesweeper game from the specified file into the array.

@param fd: File descriptor

@param array: The "cells array", which stores the state of the game.
@return 0 if the end of file (EOF) was reached, -1 1if the file contains
invalid data. An invalid file format means that it contains invalid

input (invalid character or cell position) or an 1invalid number of bombs.
*/

public static int load_map(int fd, byte[] array)

CSE 220 - Fall 2016 Homework #3 Page 9

When loading the map, each cell should start off as hidden (bit 6 set to 0) and no flag set (bit 4 set to
0). Given the position of the bombs in the map file, set the bomb bit (set bit 5 to 1) for the correspond-
ing cells array position. Once all bombs are set, calculate and set the number of bombs positioned
adjacent to each cell (bits 0-3) in each entry of the cells array.

A DO NOT assume that the memory allocated for the game is empty! You must clear all bytes before
storing any information.

Also, to be able to play the game, you must keep track of the cell that the player is operating on. Therefore,

you need toinitialize the two global variables cursor_row and cursor_col inyour .data section
to store the row and col position of the player’s cursor. Initialize row and col to position (0, 0), the top-left

corner,in load_map.

© You may write helper functions to assist you with any of the above functions. For example, it may be
useful to write a function to check an adjacent cell for a bomb.

Part Ill: Displaying Game Information

The load_map function loaded the initial state of a game into the cells array. However, none of
this information is displayed to the player in the window. To display the information to the player, the cells
of the MMIO display must be set.

Create the function init_display,which willinitialize the game display to the starting state.

/*
This function initalizes the ASCII char and foreground and
background colors of the MMIO to the the starting game state.

Hidden cells will have a grey foreground and background and an
ASCII character of “\0’.

Set and display the cursor on the screen. The cell at which the cursor 1s
positioned has a background color of yellow. The foreground and ASCII
character of the cell are unmodified.

*/

public static void 1init_display();

Once the initial state of the game is loaded, the display board will display hidden grey squares and the
position of the cursor. Recall that the (row, col) position of the cursor is managed internally by your code,
not the main file.

CSE 220 - Fall 2016 Homework #3 Page 10

CSE220 Minesweeper

When playing the game, we need to be able to change the state of a particular cell of the board based on
actions, such as moving the cursor around or setting the flag on a cell. To assist with this task, create the
function set_cell. This function will set a specified MMIO cell (row, col) to have the ASCII character,
foreground color and background color specified by the arguments. The functionreturns -1 if the row, col,
FG color, or BG color are invalid values. Return O if the arguments are valid. Your code does not need to
check if the ASCII character is invalid.

/*
This function changes the content and colors of the cell (row,col) 1in the
MMIO to the specified contents.

@param row: The row 1index

@param col: The column index

@param ch: The character to be displayed
@param FG: The new foreground color
@param BG: The new background color

@return -1 if any argument (except ch) is invalid. Valid values for the
parameters are 0<=FG<=15, 0<=BG<=15, 0<=row<1l0, and 0<=col<10. Return 0
if all parameters are valid.

Invalid input DOES NOT make any changes to the MMIO display.
*/
public static int set_cell(int row, 1int col, char ch, byte FG, byte BG);

O Note that this functions takes 5 arguments. As there are only 4 argument registers, you will need to
push the fifth argument onto the stack prior to calling the function. set_cell will read the argument
from the stack. It is the the responsibility of the calling function to remove the argument from the stack
once set_cell returns. It is CONVENTION that the function which places items on the stack is re-
sponsible to remove said items.

CSE 220 - Fall 2016 Homework #3 Page 11

This function will be used to visually modify the MMIO to display the following cell states:

State ASCII BG FG
Bomb ‘b’ or’'B’ Black Grey
Exploded Bomb ‘e’ or’'E’ | Bright Red White
Numbers ASCII digit Black Bright Magenta
Flag 'f or’F’ Grey Bright Blue
Hidden, Empty Cell \O’ Black White

o,

=

Refer to the Display Colors chart for the ASCII values of each color.

O Note thatthe set_cell function can be used to modify the MMIO cell to contain any ASCII charac-
ter and color combination. The above combinations are for usage in the game. DO NOT hard-code them
into the set_cell function. The functions perform_action and reveal_map defined later will
pass the above specified colorsto set_cell.

In real Minesweeper when you win the game, a winning screen is displayed. In our Bombsweeper game
we will display a smiley face by calling the smiley functionyou wrote earlier.

When you lose the game (reveal a cell with a bomb), the full map will be revealed to show the bomb po-
sitions. In the cell which ended the game, display the Exploded Bomb (at the position of the cursor). All
other cells are revealed, thereby revealing all digits and bomb positions, except cells which were flagged.
If a cell is flagged and the cell had a bomb (correctly identified bomb position), change the BG color to
Bright Green. If the cell is flagged but the cell did not have a bomb (incorrectly identified bomb position),
change the BG to Bright Red. Shown is an example using map3.txt.

= M =hl=
NERT =2é=

EINEIEEEREIE
T ONENE
122335662

=] ==
1262211
]| Elalial | Eleisl
111 11=2eé1
111

Create a single function which will reveal the game, win or lose, or do nothing if the game is still on-going.

CSE 220 - Fall 2016 Homework #3 Page 12

/ *

Modifies the MMIO region to display the exploding bomb and map if
game 1is lost, the smiley face if game is won, or does nothing if the
game 1is still on going.

@param game_status (1: won, 0: on-going, —-1: lost)
@param array: The "cells array", which stores the state of the game.
*/

public static void reveal_map(int game_status, byte[] array)

O reveal_map MUST call functions smiley and set_cell.

O Note: The cursor will disappear when you win or lose the game. Upon a win, the smiley face will over-
write the cursor. When you lose, the exploded bomb will be at the position of the cursor. The cursor’s
current position will become irrelevant, as upon the next load of the game the cursor will be positioned
back at (0, 0).

Part IV: Gameplay

Now that the game state can be properly displayed in the MMIO display, we need to enable the player
to interact with it. For this you will need to use the row and column position of the cursor you initialized
earlierinyour .data section. The cursor will be visible on the display with a yellow background.

The player can perform any of the following actions to play the game:

e ‘f'/'F’: the flagis TOGGLED on the cell

e r'/‘R’:thecellisrevealed

e ‘W /‘W’: the cursor is moved up 1 row

e ‘@’ /'A: the cursor is moved 1 column left

e ‘s’/'S’: the cursor is moved down 1 row

e ‘d’/‘D’: the cursor is moved 1 column right
Create the function perform_action ,whichwill move the cursor or alter the cell at the position of the
cursor bothinthe cell array andinthe MMIO display.
All the actions indicated by the player are be performed based on the cursor’s current cell.

Note, the cursor may not move beyond the edges of the board. This means there is no wrapping around

CSE 220 - Fall 2016 Homework #3 Page 13

from left to right or top to bottom. Attempting to move outside the boundaries of the board is an error.
Do not move the cursor and return -1

Other error-handling is given in the function comments below.

This function will call search_cells which is defined in Part V. For now, create an empty function for
search_cells and call the empty functionin perform_action.

/*

This function checks the cell at the cursor position and applies the game’s
logic. If the action tries to move the cursor to an invalid position or
tries to place a flag on a revealed cell, do no action and return -1.

If a player tries to flag a cell which is already flagged, the flag is removed
(toggled).

If a player tries to reveal a cell with a flag, the flag is removed and the
cell is revealed.

If a player tries to flag a revealed cell, do nothing and return -1.

If a player tries to reveal a cell which is already revealed, do nothing and
return -1.

When the desired action is r/R to reveal a cell, this function must call
the search_cells function on the cursor’s location. The search_cells
function is described in Part V.

@param array: The '"cells array", which stores the state of the game.
@param action: The ASCII code of the action to be performed by the player:
f/F/r/R/w/W/a/A/s/S/d/D as described a few paragraphs back.

@return 0 for a valid move and -1 for an invalid move

*/

public static int perform_action(byte[] array, char action);

O perform_action MUST call function set_cell and search_cells.

After the player performs an action, the state of the game must be checked.

There are three states the game can bein:

e Win: To win the game, the player must have correctly flagged all the bombs and no additional cells.

CSE 220 - Fall 2016 Homework #3 Page 14

e Lose: To lose the game, the player must have revealed a cell with a bomb.

e On-going: All other situations.

Create the function game_status which will check the current state of the game.

/*
Checks the status

@param array: the
@return 0 if game
*/

public static int

of the array argument to return the state of the game.

"cells array" which stores the state of the game.
is ongoing, 1 if game won and -1 if game is lost.

game_status(byte[] array);

Part V: Advanced Gameplay

In real Minesweeper, when you reveal a cell that has no adjacent bombs, the game performs a search for
nearby cells that are either empty or that contain a number indicating the how many mines are nearby. It
continues searching outwards, revealing cells as it goes, but does not reveal cells containing mines. The
search also will not attempt to go beyond the boundary of the board.

Consider map3.txt. Once the game is loaded, if the player reveals cell (4,3), only the single cell is un-
covered. Since the cell has adjacent bombs, only this cell is revealed.

&

&

&

;
\
’7

1]

bomb positions in map3.txt

reveal (4,3)

If the player instead reveals cell (3,9), a set of cells are revealed. All cells without any adjacent bombs are

revealed. In addition to these cells, any cells adjacent to them with an adjacent bomb is revealed.

CSE 220 - Fall 2016

Homework #3

Page 15

reveal (3,9)

If a flag was previously placed on a cell (whether a bomb exists in the cell or not), it is not revealed and any
neighboring cells are not revealed either.

mil

flag @ (6,8), reveal (3,9)

The player reveals (3,9) and the places a flag on (0,7). Then the player reveals (9,0), search_cells will
uncover the additional cells. Flags can then be placed on (7,2) and (7,6).

El 1
El
El
El
1
 1EHEEN1 B 1=
=11 1l=211l=211 1
HE | 111 131N
T _
reveal (3,9) flag (0,7) reveal (9,0) flag (7,2) &(7,6)

CSE 220 - Fall 2016 Homework #3 Page 16

To implement this functionality, create the function search_cells. Itiscalledby perform_action
when the player reveals a hidden cell that has a bomb count of O.

/ *

This function reveals the cells adjacent to the given cell index and the
neighbors of those, etc., until it reaches a cell adjacent to a bomb or
edge of the board.

@param array: The "cells array", which stores the state of the game.
@param row: Row index where the search for empty cells begins.

@param col: Column index where the search for empty cells begins.

*/

public static void search_cells(byte[] array, int row, 1int col)

This function will use the stack to track all adjacent cells which could be revealed. See the pseudocode
below for the algorithm you should implement. $fp isthe frame pointer, aregister we can use in concert

with $sp to manage the stack. In this algorithm it is used to help us keep track of what cells of the board
we still need to process and possibly reveal during the search. Inthe pseudocode, isFlag returns true

if a cell has been flagged by the player, isHidden returns true if acell is hidden, reveal reveals a
cell,and getNumber returns the count of bombs (0 through 8) near a cell.

fp = sp;
sp.push(row);
sp.push(col);
while (sp != fp) {
int row = s.pop();
int col = s.pop();
if (!cell[row][col].isFlag())
cell[row] [col].reveal()
if (cell[row][col].getNumber() == 0){
if (row + 1 < 10 && cell[row + 1][col].isHidden() && !cell[row + 1][col].isFlag()){
sp.push(row + 1);
sp.push(col);
}
if (row + 1 < 10 && cell[row][col + 1].isHidden() && !cell[row][col + 1].isFlag()) {
sp.push(row);
sp.push(col + 1);
}

if (row - 1 >= 0 && cell[row - 1][col].isHidden() && !cell[row - 1][col].isFlag()){
sp.push(row - 1);
sp.push(col);

}

if (row - 1 >= 0 && cell[row][col - 1].isHidden() && !cell[row][col - 1].isFlag(){
sp.push(row);

CSE 220 - Fall 2016 Homework #3 Page 17

sp.push(col - 1);
}
if (row - 1 >= 0 && col - >= 0) && cell[row - 1][col - 1].1isHidden()
&& !cell[row - 1][col - 1].isFlag()){
sp.push(row - 1);
sp.push(col - 1);

=

}

if (row - 1 >= 0 && col + 1 < 10 and cell[row - 1][col + 1].1isHidden()
&& !cell[row - 1][col 1].4isFlag()){
sp.push(row - 1);
sp.push(col + 1);

+

}

if (row + 1 < 10 && col -
&& !cell[row + 1][col
sp.push(row + 1);
sp.push(col - 1);

=

>= 0 && cell[row + 1][col - 1].disHidden()
1].isFlag(){

}

if (row + 1 < 10 && col +
&& !cell[row + 1][col
sp.push(row + 1);
sp.push(col + 1);

=

< 10 && cell[row + 1][col + 1].1isHidden()
1].1isFlag()){

+

Congratulations! You have created a working version of Minesweeper Bombsweeper in MIPS assembly.

Hand-in Instructions

See Sparky Submission Instructions on Piazza for hand-in instructions.

O There is no tolerance for homework submission via email. Work must be submitted through Sparky.
Please do not wait until the last minute to submit your homework. If you are struggling, stop by office
hours for additional help.

CSE 220 - Fall 2016 Homework #3 Page 18

